1. 首页 >创业 > 正文

空间直角坐标系右手法则(空间直角坐标系)

导读 关于空间直角坐标系右手法则,空间直角坐标系这个很多人还不知道,今天菲菲来为大家解答以上的问题,现在让我们一起来看看吧!1、空间直角

关于空间直角坐标系右手法则,空间直角坐标系这个很多人还不知道,今天菲菲来为大家解答以上的问题,现在让我们一起来看看吧!

1、空间直角坐标系的定义 过空间定点O作三条互相垂直的数轴,它们都以O为原点,具有相同的单位长度.这三条数轴分别称为X轴(横轴).Y轴(纵轴).Z轴(竖轴),统称为坐标轴. 各轴之间的顺序要求符合右手法则,即以右手握住Z轴,让右手的四指从X轴的正向以90度的直角转向Y轴的正向,这时大拇指所指的方向就是Z轴的正向.这样的三个坐标轴构成的坐标系称为右手空间直角坐标系.与之相对应的是左手空间直角坐标系.一般在数学中更常用右手空间直角坐标系,在其他学科方面因应用方便而异。

2、三条坐标轴中的任意两条都可以确定一个平面,称为坐标面.它们是:由X轴及Y轴所确定的XOY平面;由Y轴及Z轴所确定的YOZ平面;由X轴及Z轴所确定的XOZ平面.这三个相互垂直的坐标面把空间分成八个部分,每一部分称为一个卦限.位于X,Y,Z轴的正半轴的卦限称为第一卦限,从第一卦限开始,在XOY平面上方的卦限,按逆时针方向依次称为第二,三,四卦限;第一,二,三,四卦限 下方的卦限依次称为第五,六,七,八卦限. 具体概念:以空间一点O为原点,建立三条两两垂直的数轴;x轴,y轴,z轴,这时建立了空间直角坐标系Oxyz,其中点O叫做坐标原点,三条轴统称为坐标轴,由坐标轴确定的平面叫坐标平面。

3、 编辑本段☉空间直角坐标系内点的坐标表示方法 设点M为空间的一个定点,过点M分别作垂直于x、y、z轴的平面,依次交x、y、z轴于点P、Q、R设点P、Q、R在x、y、z轴上的坐标分别为x、y、z,那么就得到与点M对应惟一确定的有序实数组(x,y,z),有序实数组(x,y,z)叫做点M的坐标,记作M(x,y,z),这样就确定了M点的空间坐标了,其中x、y、z分别叫做点M的横坐标、纵坐标、竖坐标。

4、 编辑本段空间内两点之间的距离公式 在平面内: 设A(X1,Y1)、B(X2,Y2), 则∣AB∣=√[(X1- X2)^2+(Y1- Y2)^2]= √(1+k2) ∣X1 -X2∣, 或者∣AB∣=∣X1 -X2∣secα=∣Y1 -Y2∣/sinα, 其中α为直线AB的倾斜角,k为直线AB的斜率。

5、 在空间中: 设A(x1,y1,z1),B(x2,y2,z2) |AB|=√[(x1-x2)^2 + (y1-y2)^2 + (z1-z2)^2)] 编辑本段空间中点公式 空间中两点P1(x1,y1,z1)、P2(x2,y2,z2),中点P坐标[(x1+x2)/2,(y1+y2)/2,(z1+z2)/2]。

本文到此分享完毕,希望对大家有所帮助。

标签:

免责声明:本文由用户上传,如有侵权请联系删除!